Meadows First School

Calculation Policy

Ye@r 1. Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Start at the biggest number and count on.	 Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	Use number square to count in ones on number square. Progress to use number square to add ten to any 2 digit number. SPIDER COUNTNG Start at the larger number on the number line and count on in ones or in one jump to find the answer. $6+3=9$	$3+14=17$ Place the larger number in your head and count on the smaller number to find your answer. $14+3=$ 16
Combining two parts to make a whole: part-whole model.	Use cubes to add two numbers together as a group or in a bar. (3) (3) (3) (3) (5) (5)		$\begin{aligned} & 4+3=7 \\ & 10=6+4 \\ & \begin{array}{l} \text { Use the part-part } \\ \text { whole diagram as } \\ \text { shown above to } \\ \text { move into the } \\ \text { abstract. } \end{array} \end{aligned}$

Ye@r 1. Subtraction

| Objective and strategies | Concrete | Pictorial |
| :--- | :--- | :--- | :--- |
| Taking away ones | Use physical objects, counters, cubes
 etc to show how objects can be taken
 away.
 aways. | |

Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. 13-4 Use counters and move them away from the group as you take them away counting backwards as you go. Subtract by covering the Numicon.	Use number square to count back in ones on number square. Progress to use number square to subtract ten from digit number. Count back on a number line or number track	16-3 Put 16 in your head, count back 4. What number are you at? Use your fingers to help.
Make 10	$14-5=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9 .	Start at 13. Take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?

| Part Part Whole Model | Link to addition- use
 the part whole model
 to help explain the
 inverse between
 addition and
 subtraction. |
| :--- | :--- | :--- |
| Use a pictorial representation of objects to show the
 part whole model.
 If 10 is the whole and 6 is one of the
 parts. What is the other part? | |
| $10-6=$ | |

Ye@r 1. Multtiplication

\begin{tabular}{|c|c|c|c|}
\hline Objective and strategies \& Concrete \& Pictorial \& Abstract \\
\hline Doubling \& \begin{tabular}{l}
Find doubles to \(10+10\) e.g. Double 3 Use practical activities to show how to double a number. \\
double 4 is 8 \\
\(4 \times 2=8\)
\end{tabular} \& \begin{tabular}{l}
Draw pictures to show how to double a number. \\
Double 4 is 8
\(\square\)

\square
\square
\square
\square
\square
\square
\end{tabular} \& Double 4 is 8 .

$$
4+4=8
$$

\hline Counting in multiples \& | \square Count in multiples supported by concrete |
| :--- |
| (8) |
| (e) objects in equal \square groups. | \& Spider counting

smam ang an ang im \& | Count in multiples of a number aloud. |
| :--- |
| Write sequences with multiples of numbers. $2,4,6,8,10$ |
| $5,10,15,20,25,30$ |

\hline
\end{tabular}

Year 1. Division

Objective and strategies	Concrete	Pictorial	Abstract
Sharing objects into groups (including halving)	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2=4$	Begin to recognise and use symbols. Share 9 buns between three people. $9 \div 3=3$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	000 10 divided into 2 groups of 5 .	Begin to recognise and use symbols. $10 \div 5=2$

Year 2 - Addition

Objective and Strategies	Concrete	Pictorial	Abstract			
Using Place value to add multiples of ten to a 2 digit number.		34 35 36 44 $\ddots 0$ 46 54 55 56$22+40=62$	$25+10=35$			
Partitioning	$\begin{aligned} & 32+26=58 \\ & T:\\|+\\|^{3}=50 \\ & U: \\|+W=8 \end{aligned}$		$\begin{aligned} & 55+37= \\ & 50+30=80 \\ & 5+7=12 \\ & 80+12=92 \end{aligned}$			

Adding 31 digit numbers.	$4+7+6=17$ Put 4 and 6 together to make 10 . Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third digit.	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.
Bridging ten			$62-57=5$

Children should

1) Solve problems with addition, using concrete objects, pictorial representations, involving numbers, quantities and measures, and applying mental and written methods.
2) Apply their increasing knowledge of mental and written methods.
show that addition of two numbers can be done in any order (commutative) e.g. $5+2+1=2+1+5=1+5+2=$
3) Recognise and use the inverse relationship between addition \& subtraction and use this to check calculations and solve missing number problems.

Year 2 -Subtraction

Objective and strategies	Concrete	Pictorial	Abstract
Subtract by counting back.	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards ones.	Subtract two 2-digit numbers by counting back in 10s, then in 1s e.g. $67-34$ as 67 subtract 30 (37) then count back 4 (33) Know 1 less or 10 less than any number e.g. 1 less than 74 e.g. 10 less than 82 Use number square to subtract tens and then the ones.	$67-34=33$
Find the difference Maths Frog	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	MATHS FROG Begin to draw bar models to find the difference. Comparison Bar Models Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.

Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	Move to using numbers within the part whole model.
Make 10	$14-5=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5 . You are left with the answer of 9 .	```\[13-7= \] 6 \(\square\) \\ 3 4 \(-4\)``` Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	16-8= How many do we take off to reach the next 10 ? How many do we have left to take off?

Year 2 -Multiplication

Objective and strategies	Concrete	Pictorial	Abstract
Counting in multiples (clever counting) Count in $2 \mathrm{~s}, 3 \mathrm{~s}, 5 \mathrm{~s}$ and 10s	 Using money to count in multiples 2, 5 and 10	Spider counting Use number lines and pictures to support counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers $2,4,6,8,10$ $5,10,15,20,25,30$

Doubling Know doubles to 20 by heart.	Use practical activities to show how to double a number.	Draw pictures to show how to double a number. Double 4 is 8	 Partition a number and then double each part before recombining it back together. Begin to know doubles of multiples of 5 to 100 e.g. double 35 is 70
Repeated Addition	8.3+3 objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.

Year 2 - Division

Objective and strategies	Concrete	Pictorial	Abstract
Sharing	Sharing concrete objects into groups e.g $16 \div 4$ I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2=4$	Share 9 buns between three people. $9 \div 3=3$

Division as grouping \begin{tabular}{l}
Divide quantities into equal groups.

Use cubes, counters, objects or place value counters to

aid understanding.

Use a number line to show jumps in groups. The number

of jumps equals the number of groups.
\end{tabular}

Year 3-Addition

Year 3 -Subtraction

Objective and strategies	Concrete	Pictorial	Abstract
Find the difference Maths Frog	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	MATHS FROG Develop counting up subtraction e.g. 423-357 = 66	$901-899=2$
Column subtraction	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make. When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.	Expanded column subtraction $\begin{array}{rrr} 600 & 110 & 16 \\ 700 & 20 & 8 \\ -300 & 50 & 8 \\ \hline 300 & 60 & 8 \\ \hline \end{array}$ Compact Column Subtraction $\begin{array}{rrr} 6 & 11 & 16 \\ 7 & 2 & 8 \\ -3 & 5 & 8 \\ \hline 3 & 6 & 8 \\ \hline \end{array}$

Year 3 -Multiplication

Doubling Know doubles to 20 by heart.	Use practical activities to show how to double a number. double 4 is 8 $4 \times 2=8$	Draw pictures to show how to double a number. Double 4 is 8 \square \square \square \square \square \square \square \square	Find doubles of numbers to 50 using partitioning e.g. double 48
Repeated Addition	Use different objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.

Arrays	Use arrays to find answers to multiplication and relate to 'clever' counting and repeated addition. e.g. 3×4 as three lots of four things e.g. 6×5 as six steps in the 5 s count as well as six lots of five and $5+5+5+5+5+5$ or $6+6+6+6+6$ Understand that $5 \times$ 3 can be worked out as three $5 s$ or five $3 s$	Draw arrays in different rotations to find commutative multiplication sentences. $5 \times 6=30$ OR 6×5	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5+5+5+5=30 \\ & 6+6+6+6+6=30 \\ & 5 \times 6=30 \\ & 6 \times 5=30 \end{aligned}$
Grid Method 2digit x 1 digit	Show the link with arrays to first introduce the grid method.	Children can represent the work they have done with place value counters in a way that they understand. They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.	Start with multiplying by one digit numbers and showing the clear addition alongside the grid.
	Move on to using Base 10 to move towards a more compact method.		\times 20 3 4 80 12
	4 rows of 13		4 80 12

Year 3 - Division

Objective and strategies	Concrete	Pictorial	Abstract
Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rr} \text { Eg } 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$
Division on a number line		Children progress to 'chunking' to divide past their times tables.	$16 \div 4=4$ $85 \div 5=17$

| 1Division with a | | |
| :--- | :--- | :--- | :--- |
| remainder | $14 \div 3=$
 Divide objects between groups and see how
 much is left over. | Jump forward in equal jumps on a number line then see
 how many more you need to jump to find a remainder. |
| divisions and show the | | |
| remainder using r. | | |

Year 4 Addlition

Year ${ }_{4}^{4}$-Subtraction

Objective and strategies	Concrete	Pictorial	Abstract
Find the difference Maths Frog	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Continue to develop counting up subtraction with larger numbers e.g 2002-1865 Use maths frog to calculate change	1008-987 Tom buys a game for $£ 34.75$. He pays with a $£ 50$ note. How much change will he get?
Column subtraction	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make. When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.	Expanded column subtraction with up to 4 digits Compact Column Subtraction4 digit numbers $\begin{array}{rrr} 600 & 110 & 16 \\ 200 & 20 & 8 \\ -300 & 508 \\ \hline 300 & 60 & 8 \\ \hline \end{array}$

Year \mathbb{L}_{4} Multiplication

Doubling Know doubles to 20 by heart.	Use practical activities to show how to double a number. double 4 is 8 $4 \times 2=8$	Draw pictures to show how to double a number. Double 4 is 8	Find doubles of numbers to 50 using partitioning e.g. double 48 Begin to double amounts of money e.g. $£ 3 \cdot 50$ doubled is $£ 7$ and double $£ 35.60$ is $£ 71.20$,

Year ${ }_{4}^{4} \cdot$ Division

Objective and strategies Concrete

| Chunking on a number
 line (past their time
 tables) | | $85 \div 5=17$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

